

WORKSHOP

Advances in Evaluation, Testing, Repair and Maintenance Management of Structures: Overview of the New Modified ACI 562M-16 Code for Repair of Structures

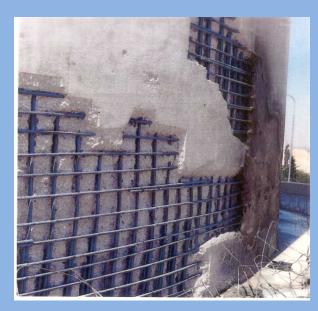
An ACI Standard

Code Requirements for Assessment, Repair, and Rehabilitation of Existing Concrete Structures and Commentary (metric)

Prof. Mufid Samarai, Senior Advisor-

Sharjah Research Academy, UAE

 $\mathcal{H}_{\mathsf{ICC}}$


COURSE OBJECTIVES and CONTENT:

- 1. To familiarize the trainees with the only and the latest code ACI- 652M-16 on repair of structures.
- 2. To introduce the trainees to factors influencing durability and causes of structural failure of concrete.
- **3.** Ability to distinguish the different types of cracks in the concrete elements and grasping the factors that causes corrosion of the reinforcement.
- 4. The latest and most common non-destructive in-situ testing for structures.
- 5. It will present maintenance and quality control systems.
- 6. Acquaint the trainee with examples and case studies related to maintenance using the ACI repair code.

COURSE LANGUAGE:

English with Arabic support

PART ONE:

- IMPORTANCE OF MAINTENANCE
- MAINTENANCE AND ITS OBJECTIVE
- NEED FOR REPAIR OR STRENGTHENING
- HISTORY OF REPAIR CODES
- THE NEW ACI-562M

IMPORTANCE OF MAINTENANCE

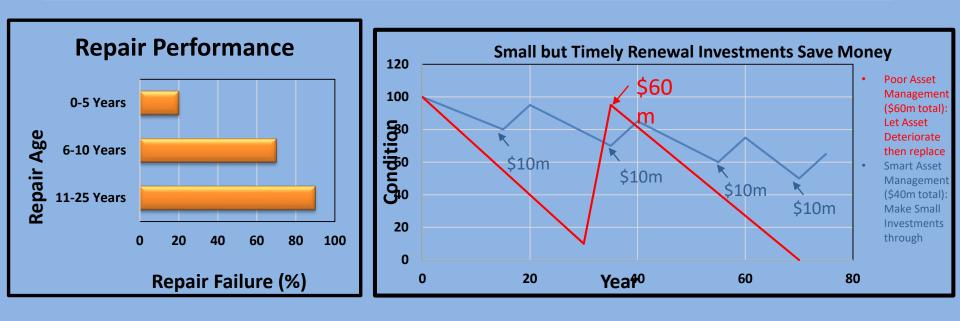
 In the United States conservative estimates of the current cost to rehabilitate deteriorating concrete structures are in the 18-21 billion dollar/year range.

 Within Europe it has been estimated that the value of the infrastructure built environment represents around 50% of the national wealth of most countries. Around 50% of the expenditure in the construction industry in Europe is spent on repair, maintenance and remediation

• The South African National Road Agency Ltd. (SANRAL) estimates that repair costs can rise to six times maintenance costs after three years of neglect and to 18 times after five years of neglect.

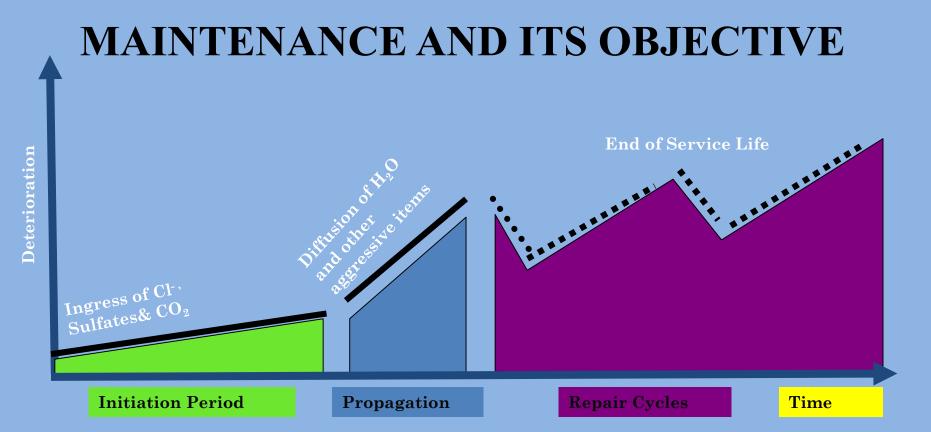
IMPORTANCE OF MAINTENANCE De Sitter's Law of Fives

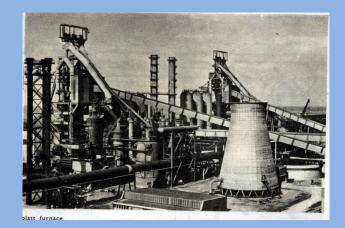
A major repair can be expected to cost roughly five


times what routine maintenance would have cost. An all-out replacement will cost five times what major repair would have cost.

Importance of Maintenance Management

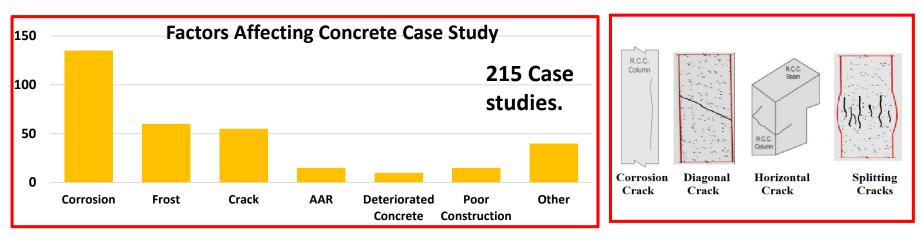
Maintenance management is not to repair broken equipment rapidly. <u>Maintenance management is to</u> <u>keep the asset running at high capacity</u> and produce quality products at lowest cost possible.


MAINTENANCE AND ITS OBJECTIVES


"Maintenance is a combination of any actions carried out to retain an item in ,or restore it to an acceptable condition."

Improve the Maintenance Systems to :

- 1. Prevent failures.
- 2. Reduce the need to do maintenance.
- 3. Optimize the use of resources.
- 4. Make better quality lower cost.



Causes of Failure and Need for Repair

WHY DO STRUCTURES NEED REPAIR, STRENGTHENING, OR BOTH?

- Overloading
- Deterioration or structural weaknes
- Use of inappropriate materials
- Design or construction errors

Large spall area on all balconies of building [Photo Credit: Robert Pirro]

http://ascelibrary.org/doi/full/10.1061/(ASCE)CF.1943-5509.0000731

Accidental effects (fire, flood, EQ)

Environmental effects

- Chloride penetration
- Carbonation of concrete
- Freeze-thaw
- Change in use, Code upgrades

Faulty Concrete Excess mixing water Improper aggregate Improper design

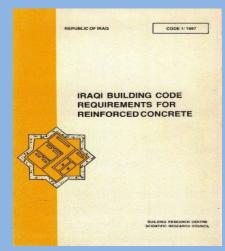
TYPES OF MAINTENANCE

1. Routine Maintenance (Cyclic Maintenance)

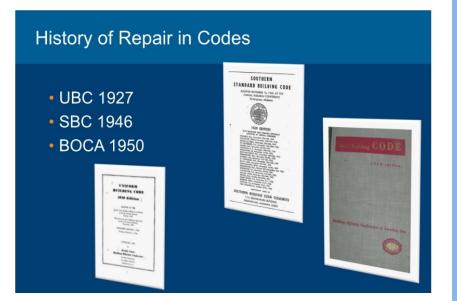
- 2. PREVENTIVE MAINTENANCE (SCHEDULED MAINTENANCE)
- 3. Corrective Maintenance (Emergency maintenance)

HISTORIC OVERVIEW

□ USA Inaugural convention of the National Association of Cement Users (NACU) organized (1904-1909).


First "Building code "Appeared , Name Changed to American Concrete Institute (1910-1914) . ACI headquarters established in Detroit (1915-1919) .

- Canada model code development and maintenance began in the 1930 with the first edition of the National Building Code of Canada being published in 1941.
- The Indian Maintenance of Internal Security Act (MISA) was a controversial law passed by the Indian parliament in 1971
- The Egyptian Load Computing Code 1993
- Iraqi Building Code 1987

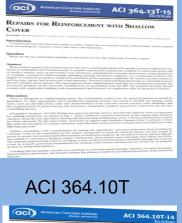


Making Concrete Blocks 1904

History of Repair Codes

History of Repair Codes

80s change in philosophy:

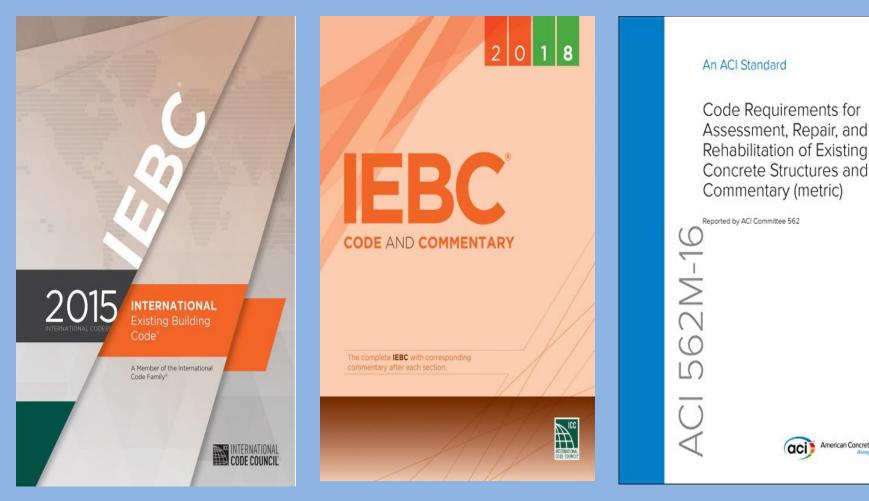

Leave undamaged, unaffected elements alone, and apply new construction rules only to elements of the construction that are damaged

ACI 364.14T

ACI 364.13T

REHABILITATION OF STRUCTURE WITH REINFORCEMENT SECTION LOSS

> vensed in fundational to the strength, durinity, and safety of reindoroid axity of additional or replacement involvement in a primary concern in a d reinforcing steel.


the entropy of the second seco

International Existing Building Code (IEBC)

ACI 562M a New **Repair Code**

American Concrete Institute

ACI 562M Cha	pters:	
Chapter 1	General Requirements	
Chapter 2	Notations and Definitions	
Chapter 3	Referenced Standards	Preliminary Evaluation
Chapter 4	Criteria when using this code with IEBC	
APPENDIX A	Criteria using this code as stand-alone code	
Chapter 5	Loads Factored load combinations and ϕ	Structural
Chapter 6	Assessment, evaluation and analysis	Assessment
Chapter 7	Design of structural repairs	
Chapter 8	Durability	Design
Chapter 9	Construction	
Chapter 10	Quality Assurance	Construction

APPENDIX A—CRITE	RIA WHEN USING THIS CODE AS A STAND-ALONE CODE, p. 78	
Module	Content	Page Number
A.1	General	p. 78
A.2	Design-basis code criteria	p. 78
A.3	Unsafe structural conditions	p. 79
A.4	Substantial structural damage	p. 80
A.5	Conditions of deterioration, faulty construction or damage less than substantial structural damage	p. 81
A.6	Conditions of deterioration, faulty construction, or damage less than substantial structural damage without strengthening	p. 84
A.7	Additions	p. 84
A.8	Alterations	p. 84
A.9	Change of occupancy	p. 85
	Key changes from ACI 562M-13 to ACI 562M- 16	p. 86

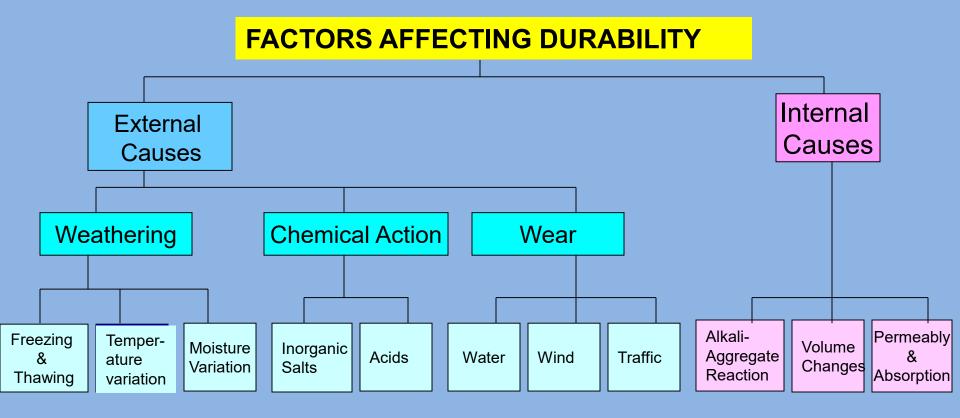
	ACI 562M-16 with IEBC	ACI 562M-16 as Stand Alone
2.1-General	This code will apply if a jurisdiction has received this code by reference. At the point when this code is utilized, IEBC will not matter.	jurisdiction has adopted the International Existing Building Code as the existing building code. When this code is used, ACI 562M-16 with IEBC does not apply.
Conditions	a structural evaluation will be performed to decide if unsafe structural conditions are available, when there is a condition to wonder the limit of the structure. If the demand-capacity ratio exceeds 1.5 for structures, it should be reported as unsafe structure. And if the demand- capacity ratio between 4.4-4.9 will be utilized to decide the design basis criteria.	a structural evaluation will be performed to decide if unsafe structural conditions are available, when there is a condition to wonder the limit of the structure. If the demand-capacity ratio exceeds 1.5 for structures, it should be reported as unsafe structure.
2.3-Substantial structural damage	Substantial structural damage shall be assessed and rehabilitated as referenced in Table 4.1.4.	Substantial structural damage will be evaluated by current building code demands and it should be reduced more than 33% from its pre-damaged condition. (∑Rn-∑Rcn)/Rn > 33%
2.4-Conditions of deterioration	If a structure has damage less than substantial structural deterioration, and there is a reason to wonder about the capacity of the structure, it shall be evaluated by checking the demand-capacity ratio Uo/φoRcn. If Uo/φoRcn is greater than 1.0, repairs will be allowed to restore the structure to the pre-damage or pre-deteriorated states.	If a structure has damage less than substantial structural deterioration, and there is a reason to wonder about the capacity of the structure, it shall be evaluated by checking the demand-capacity ratio Uo/φoRcn . If Uo/φoRcn is greater than 1.0, repairs will be allowed to restore the structure to the pre-damage or pre-deteriorated states.

	ACI 562M-16 with IEBC	ACI 562M-16 as Stand Alone
2.1-General	This code will apply if a jurisdiction has received this code by reference. At the point when this code is utilized, IEBC will not matter.	jurisdiction has adopted the International Existing Building Code as the existing building code. When this code is used, ACI 562M-16 with IEBC does not apply.
2.2-Unsafe Structural Conditions	a structural evaluation will be performed to decide if unsafe structural conditions are available, when there is a condition to wonder the limit of the structure. If the demand-capacity ratio exceeds 1.5 for structures, it should be reported as unsafe structure. And if the demand-capacity ratio between 4.4-4.9 will be utilized to decide the design basis criteria.	a structural evaluation will be performed to decide if unsafe structural conditions are available, when there is a condition to wonder the limit of the structure. If the demand-capacity ratio exceeds 1.5 for structures, it should be reported as unsafe structure.
2.3-Substantial structural damage	Substantial structural damage shall be assessed and rehabilitated as referenced in Table 4.1.4.	Substantial structural damage will be evaluated by current building code demands and it should be reduced more than 33% from its pre-damaged condition. (∑Rn-∑Rcn)/Rn > 33%
2.4-Conditions of deterioration	If a structure has damage less than substantial structural deterioration, and there is a reason to wonder about the capacity of the structure, it shall be evaluated by checking the demand-capacity ratio Uo/ ϕ oRcn. If Uo/ ϕ oRcn is greater than 1.0, repairs will be allowed to restore the structure to the pre-damage or pre-deteriorated states.	If a structure has damage less than substantial structural deterioration, and there is a reason to wonder about the capacity of the structure, it shall be evaluated by checking the demand-capacity ratio Uo/φoRcn . If Uo/φoRcn is greater than 1.0, repairs will be allowed to restore the structure to the pre-damage or pre-deteriorated states.

If anticipated repair cost:

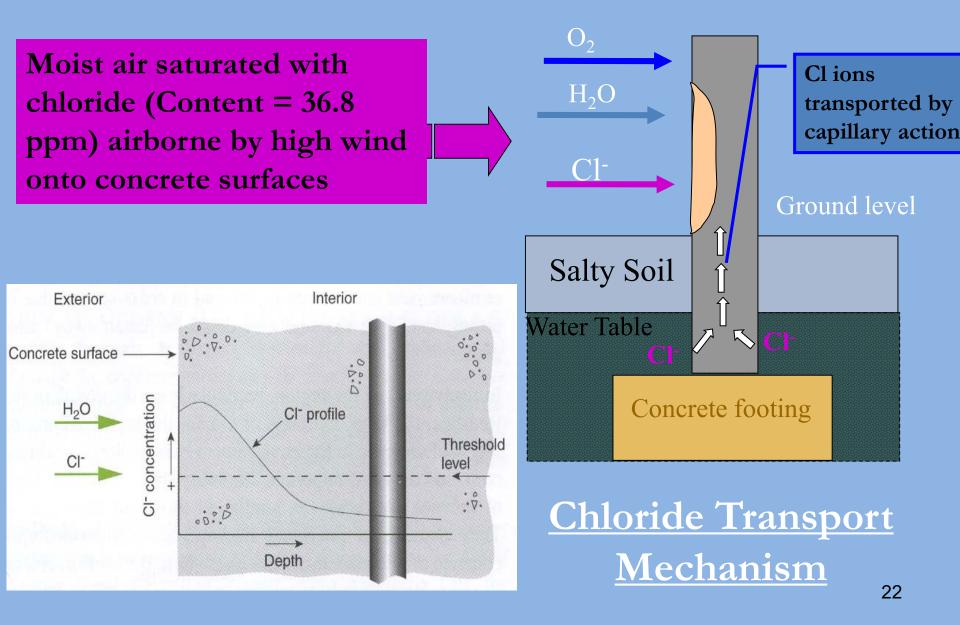
Less than 25% of bldg. value, then in-kind repair was typically allowed 25-50% of bldg. value, unaffected portions of bldg. did not have to be upgraded Exceeds 50% of bldg. value, upgraded to new construction requirements

Codes vs. Guidelines

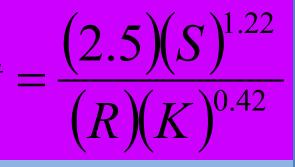

- Codes
 - Adopted by regulatory agencies
 - Mandatory language (shall not should)
 - Establish required practice
 - ACI 318, ASCE 7, IBC, IEBC codes
- Guidelines
 - Non-mandatory language (should not shall)
 - Establish recommended practice
 - ACI 364, ICRI documents guidelines

PART TWO:

Types and factors affecting durability


.E.

Types and factors affecting corrosion

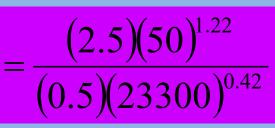


Micro Climatic and Chloride effect

Service Life Estimation Clear's Simplified Equation

- Where t: Service Life in Years
- S: Concrete cover in mm

R= w/c ratio

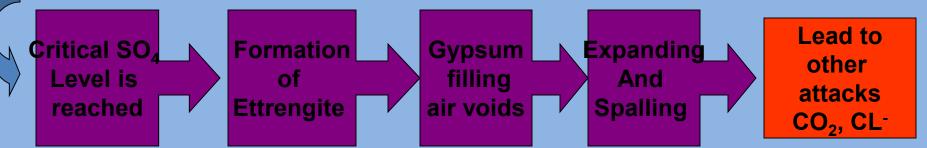

K: CI⁻ Content of exposure solution in PPM

Concrete cover S= 50 mm

R= w/c ratio= 0.5

Exposure sea water K= 23,300 ppm

$$t = \frac{(2.5)(S)^{1.22}}{(R)(K)^{0.42}}$$

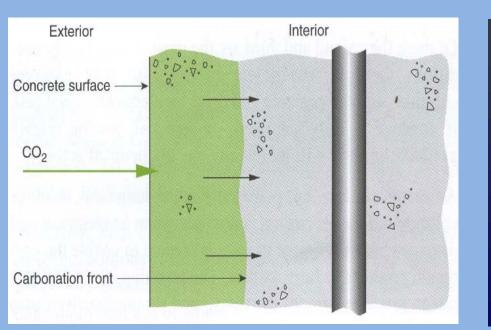


This is a logical service life for a structure exposed to the splash zone. Try to find the required R for a t = 50 yrs & S $_{max}$ =100 mm

SULFATE INGRESS INTO CONCRETE

The effect of SO₄-² Ingress into concrete durability is significant for reinforced and non reinforced concrete

Factors Affecting Sulfate deterioration Rate (K_s):


- W/C

 $-SO_A$

- C₃A Content
- Curing Period
- Temp: 40/ 50 °C

Carbonation of Concrete Cover

Time for carbonation to reach reinforcement (years)

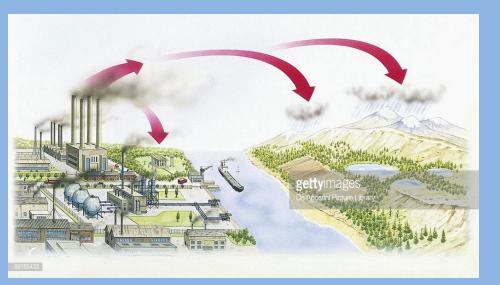
External concrete sheltered from rain

w/c cover	10 mm	30 mm
0.7	5	45
0.5	15	135

Concrete cover protects the reinforcing steel with its alkaline nature (PH level ~ 13). This protection diminishes by ingress of CO_2 from the atmosphere and reduces the PH level to 9. At this stage concrete is no longer protecting the steel and in the presence of moisture and O_2 , steel begins to corrode

Alkali/ Silica Reaction

Silicaceous aggregates chemically react with the cement in concrete to form a water absorbing gel.


The gel expands and cracks the concrete exposing it to chloride and carbonation attack.

Acid rain

 The product of industrial pollution of the atmosphere, acid rain, containing dissolved oxides of sulfur and nitrogen, reacts with the alkali in the concrete to further lower the pH value.

Durability of Concrete

D	e s	С	C o n I n	n S
Α	lk	a Rea aggre	A g g	regate with er
S	u l f	c o m	P a s t	
Α	c i	s u	P a s	t G e n e
R	e b	a R u s	Rein	forcem abo rein
F	r o	s Freez pc	P a s t	e spa
D	- c	Freez p(A g	Fine roug joint
F	ir (D e c o h y d r a d e v e 1 s t	t	5
T S	h e h	r Intern re con	Past	e (aggr

PART THREE

- Evaluation of concrete structures
- Testing of reinforced concrete structures
- Evaluation of tests and its validity
- Loads, Factored Load Combinations and
- Load Factors

ACI EVALUATION AND REPAIR DOCUMENTS

ACI 201.1R—Guide for Conducting a Visual Inspection of Concrete in Service

ACI 214.4R Guide for Obtaining Cores and Interpreting Compressive Strength Results

ACI 224.1R—Causes, Evaluation, and Repair of Cracks in Concrete Structures

ACI 228.2R—Nondestructive Test Methods for Evaluation of Concrete in Structures

ACI 325.13R_ Concrete Overlays for pavement Rehabilitation

ACI 341.3R Seismic Evaluation and Retrofit Techniques for Concrete Bridges

ACI 364.1-13T Repair Tech Notes

ACI 364.1R—Guide for Evaluation of Concrete Structures before Rehabilitation

Renabilitation

ACI 364.3R__Guide for Cementitious Repair Material Data Sheet

ACI 437R—Strength Evaluation of Existing Concrete Buildings

ACI 437.1R_Load Tests of Concrete Structures: Methods, Magnitude,

Protocols, and Acceptance Criteria

ACI 503.5R__Guide for the Selection of Polymer Adhesives with Concrete

ACI 503.7__Specification for Crack Repair by Epoxy Injection

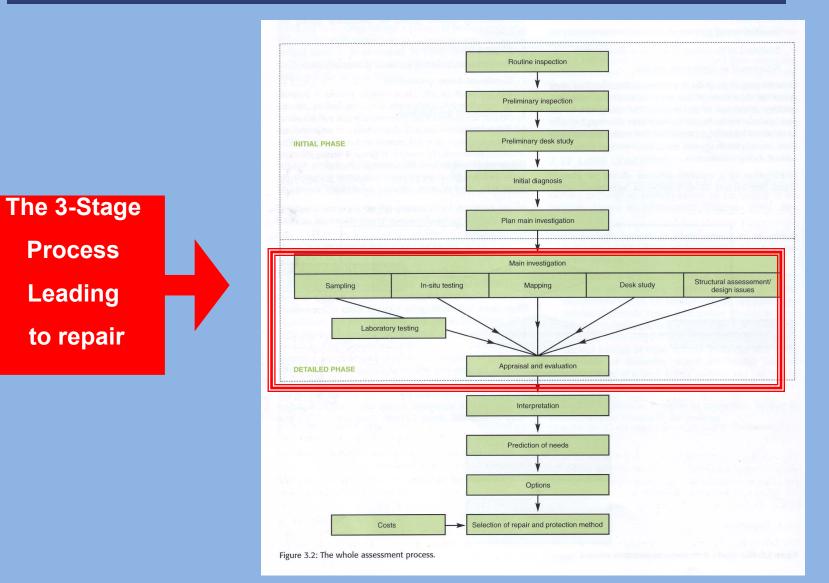
ACI 506.2__Specification for Shotcrete

ACI 546R—Concrete Repair Guide

ACI 546.3R__Guide for the Selection of materials of the Repair of Concrete

ACI E706___Repair Application Procedures (RAP) 1-14

LICENSED DESIGN PROFESSIONAL


Shall be understood to mean persons who possess the knowledge, judgment and skills to interpret and properly use this code and are licensed in the jurisdiction where this code is being used. The licensed design professional for the project is responsible for and in charge of the assessment or rehabilitation design, or both.

Investigation

Sample of Preliminary inspection Form

Structure	Rating						
Part of structure	0	1	2	3	4	5	
Date of inspection	None	Very slight	Slight	Moderate	Severe	Very sever	
Defects			15.030			10.55	
Cracking							
Ptastic shrinkage/settlement							
Thermal contraction							
Structural							
Crazing							
Rust staining							
Water leakage							
Pop-outs							
Spalling							
oss of surface							
Abrasion							
Chemical attack	-						
fflorescence							
Others (specify below)							
ixisting repairs (if any)							
Delamination/debonding							
Cracking							
Others (specify below)							
Supplementary documentation	Details (including refere	nce numbe	ers etc)			
iketches							
hotographs							
Others (specify below)							

Inspector ID: Atfiliation:		e: 🗆 AM 🗆 Exterior only 🔹 Exterior and inte
Building Description Building name:	Steel frame	n Concrete shear wall Unreinforced masonry Reinforced masonry Other:
Number of stories above ground: below ground: Approx. "Footprint area" (square feet): Number of residential units: Number of residential units: not habitable:	Dwelling Other residential Public assembly	Commercial Governm Offices Historic Industrial School
Evaluation Investigate the building for the conditions below and chee Observed Conditions: M Collapse, partial collapse, or building off foundation Building or story leaning Racking damage to walls, other structural damage Dimmey, parapet, or other falling hazard Ground slope movement or cracking Other lspecify) Comments:	linor/None Moderate	Estimated Building Dama (eccluding contents) Severe None 0-1% 1-10% 0-30% 00-60% 00-100% 100%
Posting Choose a posting based on the evaluation and team judge an Unsafe posting. Localized Severe and overall Moderate placard at main entrance. Post RESTRICTED USE and UN INSPECTED (Green placard) RESTRIC Record any use and entry restrictions exactly as written	e conditions may allow a Restrict ISAFE placards at all entrances. CTED USE (Yellow placard)	ted Use posting. Post INSPECTED
	ther actions are needed.	
Further Actions Check the baxes below only if furt Barricades needed in the following areas:		

ACI 562 Chapter 6—Assessment, Evaluation, and Analysis

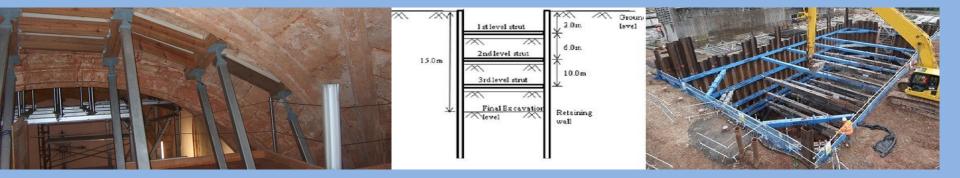
Time frame	Footings	Beams	Slabs	Columns	Walls
1900-1919	7	14	10	10	7
1920-1949	10	14	14	14	14
1950-1969	17	21	21	21	17
1970-present	21	21	21	21	21

Table 6.3.1a – Default compressive strength of structural

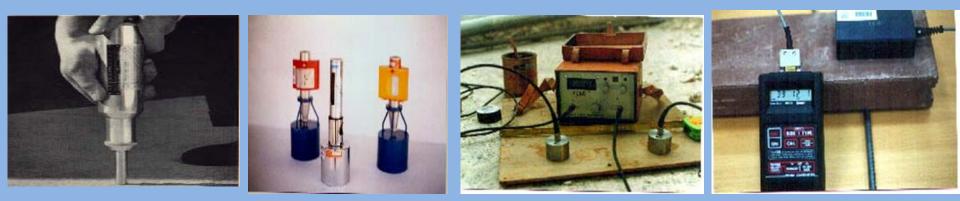
• Table 6.3.1b – Default tensile and yield strength

properties for steel reinforcing bars for various periods*

	Structural*	Intermediate [,]	Hard				
Grade	230	280	350	420	450	485	520
Minimum yield, MPa	230	280	350	420	450	485	520
Minimum tensile, MPa	380	485	550	620	520	550	690
1911-1959	Х	Х	Х	_	Х	_	—
1959-1966	Х	Х	Х	Х	Х	Х	Х
1966-1972	—	Х	Х	Х	Х	Х	—
1972-1974	—	Х	Х	Х	Х	Х	—
1974-1987	—	Х	Х	Х	Х	Х	—
1987-Present	—	Х	Х	Х	Х	Х	—


Note: Adopted from ASCE/SEI 41.

*An entry of "X" indicates the grade was available in those years.


†The terms "structural," "intermediate," and "hard" became obsolete in 1968.

LOAD FACTORS AND COMBINATIONS

- Do not use load factors and load combinations from ACI 562M with strength reduction factors from the original building code.
- Requirements for shoring and temporary support
 - Building occupied during repair "loads per current code (ASCE/SEI 7)"
 - Building unoccupied during repair "loads may be based on ASCE/SEI 37 "
 - Building subjected to seismic loading "loads per seismic code (ASCE/SEI 41)"

TESTING OF REINFORCED CONCRETE STRUCTURES

Testing- Scope and Guidance

Testing is performed in order to obtain sufficient information on the condition of the deteriorated structure so that the appropriate remedial repair method is implemented. The sampling rate, type and location of tests shall include:

Different elements (Columns, beams, Slab)

- Typical deteriorated areas
- •Typical Non-deteriorated areas
- Areas with Different exposure conditions
- Previously repaired areas

NO TESTS SHALL BE CARRIED OUT UNLESS IT IS KNOWN WHAT THE RESULTS WILL BE USED FOR

TYPES OF TESTS

• DESTRUCTIVE TESTS:

These conventional methods enable the strength of the concrete to be measured by way of cores or cubes cut from the concrete. However, this is not possible in all cases and especially not for slender members.

NON-DESTRUCTIVE TESTS:

By definition, the strength properties are not measured directly so some other properties are measured and the strength estimated by calibration. Naturally, these methods have the great advantage that concrete is not damaged. For example: Ultra-sound test and Schemed Hummer Test.

• PARTIALLY DESTRUCTIVE TESTS:

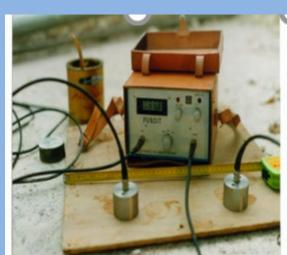
In these tests, the concrete is tested to failure but the destructive resulting is very localized and member under test is not weakened to any significant extent For example Core test.



Assessment, Evaluation, and Analysis

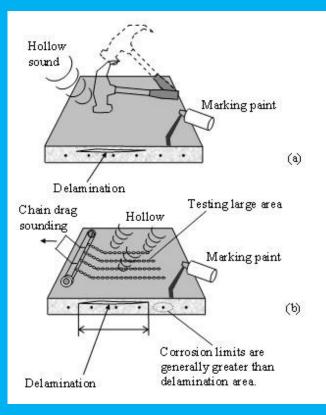
Non-destructive Testing

- Sounding or chain drag (ASTM D 4580)
- Rebound hammer (ASTM C803/C803M-17)
- Penetration resistance (ASTMC803/C803M & C805)
- •Reinforcing steel cover meter (pachometer ASTM D4748)
- Impact echo (ASTM C 1383)
- Ultrasonic pulse velocity (ASTM C 597)
- Corrosion potential (ASTM C 876)
- Ground-penetrating radar (extrapolation of ASTM D 6432)

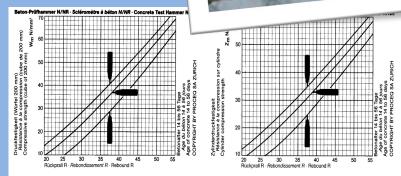

Ultra Sonic Materials Analysis (PULSE VELOCITY) (ASTM C 597)

(DETECTING CRACKS, VOIDS AND FLAWS TO FIND THE DAMAGE PATTERN),

It can be used to control the effectiveness of repair by injection technique .



Chain Dragging


REBOUND HAMMER (ASTM C803/C803M-17)

Advantages

- Speed
- Low Cost
- Relatively low expertise required

Limitations

- Relates to only surface zone
- Results influences by
 - Surface texture
 - Moisture condition
 - Type of aggregate
 - Carbonation
 - Type of cement
 - Movement of concrete under test

PARTIALLY DESTRUCTIVE TEST METHODS

<u>The most common partially destructive tests are-</u> <u>- pullout,-- pull-off, --penetration resistance--</u> <u>break-off, Windsor Probe</u>

METHOD	STANDARDS		PRINCIPLE FEATURES
	ASTM	BS 1881	
Rebound hammer	C805		Existing concrete,best used comparatively
Pull out	C900	207	Existing concrete , high variability
Pull off		207	Existing concrete surface or partially cored
Break off	C1150	207	New construction or Exsisting concrete

Figure 4.26 'Limpet' equipment

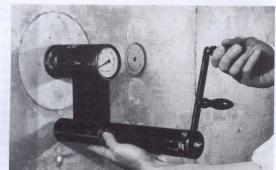
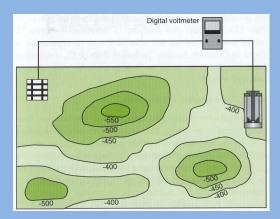
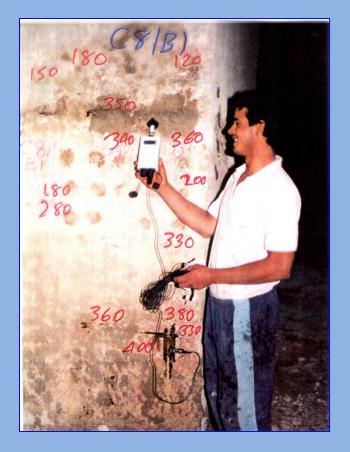



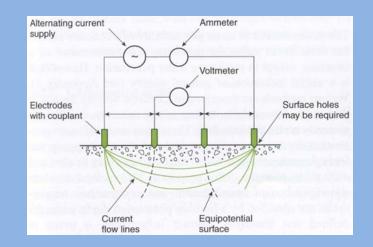
Figure 4.10 Lok-test equipment (photograph by courtesy of Lok-test Aps


IN-SITU Testing

•Half Cell potential: It measures the electrical potential on the surface of steel to qualitatively estimate the its likelihood of corrosion.

Potential P (mV)	Risk of corrosion
P > -200 mV	5 %
-350< P< -200	50 %
P< -350	95 %

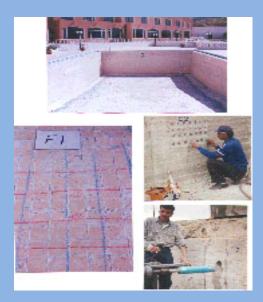
CORROSION POTENCIAL (ASTM C876)


Resistivity : It used to qualitatively estimate the likelihood of corrosion Rate

• Corrosion Rate (ASTM G59)

 Provides instantaneous corrosion rates

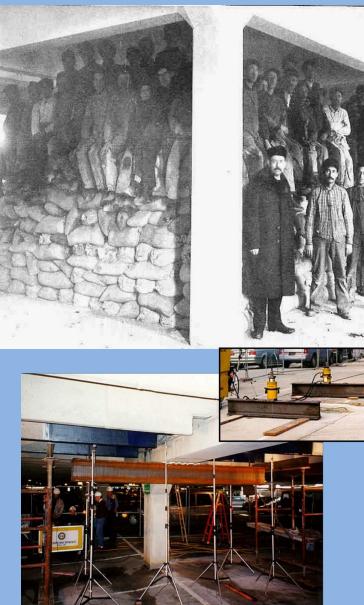
Source: PCTE



Resistivity R (ohm cm)	Likely corrosion Rate
R <5000	Very High
5000< R< 10000	High
10000 <r<20000< td=""><td>Low</td></r<20000<>	Low
R>20000	Negligible

DESTRUCTIVE TESTS CORES

ASTM C 42-04, "Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete,"



Factors that influence measured core compressive strength:

Concrete characteristics and testing variables: (Length/diameter ratio of core, Diameter of core, Direction of drilling, Method of capping and reinforcement) The Concrete Society and BS 1881: Part 120 suggest that cores should be kept as short as possible ($I/d = 1.0 \rightarrow 1.2$). Correction factors are minimized if the core length/diameter ratio is close to 2.0 and this view is supported by ASTM C42

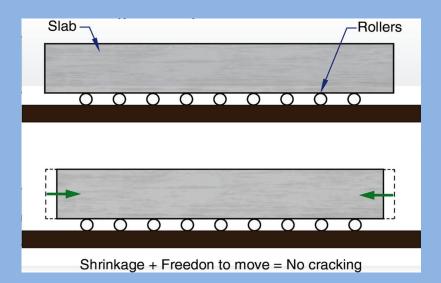
Load Testing

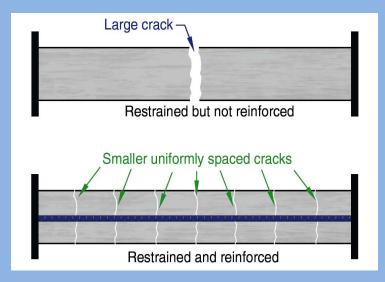
437.2-13 Code Requirements for Load Testing of Existing Concrete Structures and Commentary

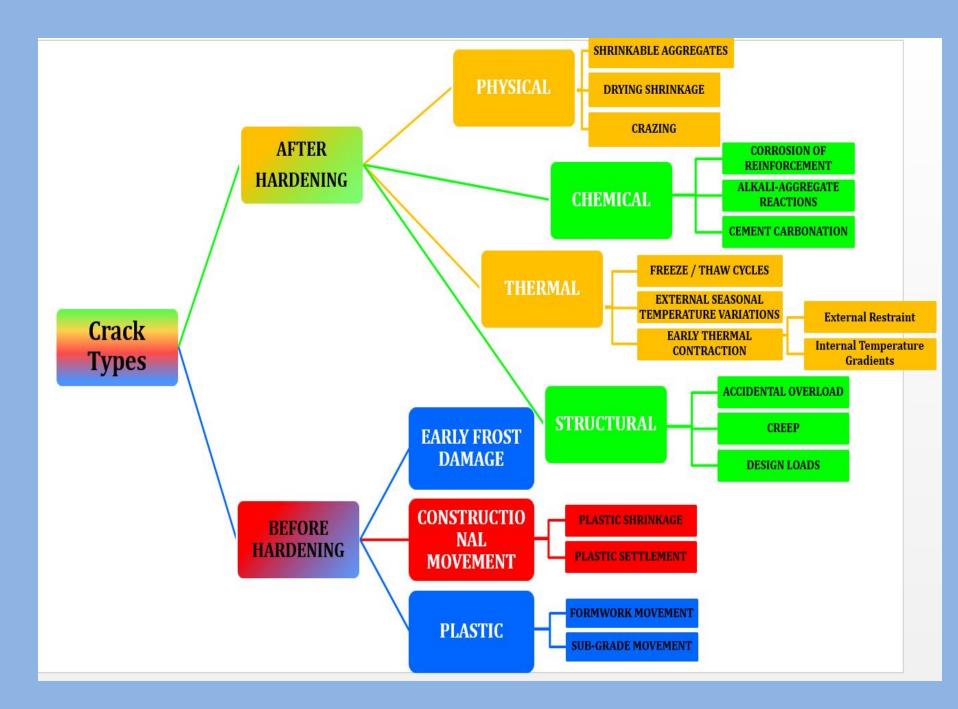
ACI 437.2-13

Code Requirements for Load Testing of Existing Concrete Structures (ACI 437.2-13) and Commentary AcACI Bandeet

Reported by ACI Committee 437


American Concrete Institute"


• PART FOUR


- Causes and repair of cracks
- Repair techniques and processes
- Repair materials
- Monitoring of Structures
- Case Study

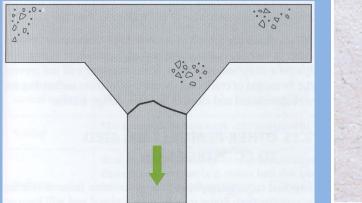
INTRODUCTION TO CRACKING AND REPAIR

- WHILE CONCRETE LOOK NICE WHEN THEY ARE NEW, OVER TIME THE CONCRETE CAN CHIP, CRACK AND CRUMBLE.
- CRACKS FORM WHEN THE TENSILE STRENGTH OR TENSILE STRAIN EXCEEDS THAT OF CONCRETE.

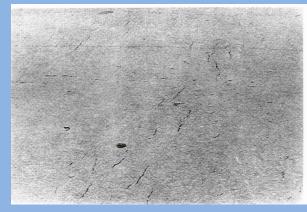
CLASSIFICATION OF CRACKS

Cracks maybe separated into two classes for the purpose of deciding upon the type of repair.

a) DORMANT CRACKS .

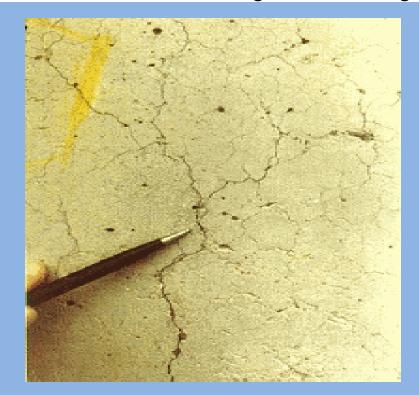

fine cracks:
 wide cracs:
 fractures :

b) LIVE CRACKS.



Plastic cracks

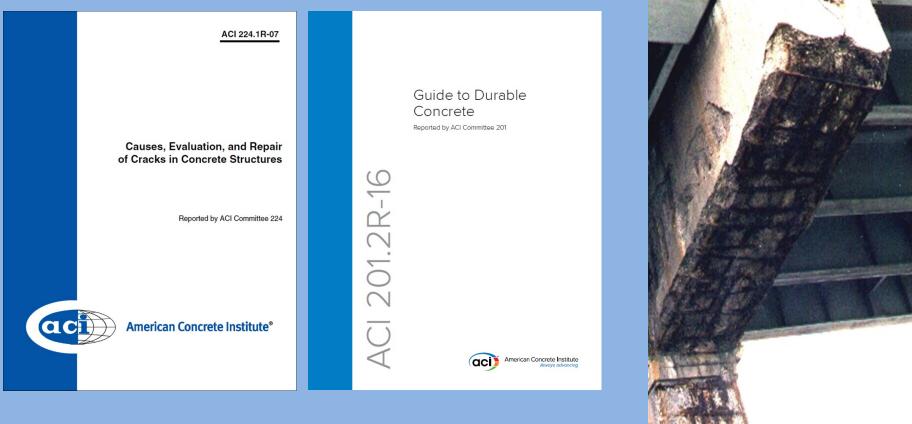
- Plastic cracks occur in concrete before it hardens, say **1 to 8** hours after placing although they are often not noticed until the following day.
- Generally they can be identified as one of two types, namely:
- 1. plastic settlement.
- 2. plastic shrinkage.
- Most plastic settlement cracks appear in deep sections, but plastic shrinkage cracks are most common in flat slabs exposed to high rates of evaporation.
- Both types are governed in contradictory ways by the phenomenon of BLEEDING.


Alkali-Silica Reaction (ASR) – Damage

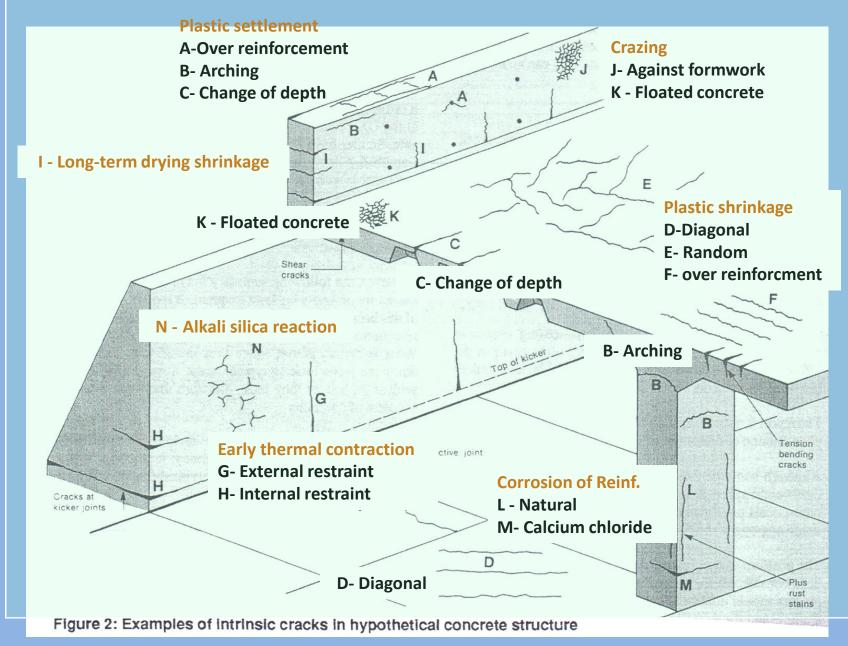
Drying Shrinkage Cracks

- Cracking (alligator pattern)
- Gross expansion of concrete


Shallow, closely spaced, fine cracks Thermal stress > tensile strength → cracking



Thermal Cracking – Damage


Causes and Control of Cracking

ACI 224.1R-07

Monday, November 11, 2019

NON-STRUCTURAL CRACKS IN CONCRETE

Type of cracking	Letter (see Figure 2)	Subdivision	Most common location	Primary cause (excluding restraint)	Secondary causes/ factors	Remedy (assuming basic redesign is impossible) In all cases reduce restraint	Further details see section	Time of appearance
	A	Over reinforcement	Deep sections	RapidExcessearlybleedingdrying		Reduce bleeding (air entrainment) or revibrate		· · · · · · · · · · · · · · · · · · ·
Plastic ' settlement	В	Arching	Top of columns				5.2	Ten minutes to three hours
	С	Change of depth	Trough and waffle slabs	conditions				
	D	Diagonal	Roads and slabs	Rapid early				Thirty
Plastic shrinkage	E	Random	Reinforced concrete slabs	drying Low rate of bleeding		early	5.3	minutes to six
	F	Over reinforcement	Reinforced concrete slabs	Ditto plus steel near surface				hours
Early thermal	G	External restraint	Thick walls	Excess heat generation	Rapid	Reduce heat	6	One day to two or
contraction				insulate		three weeks		

513

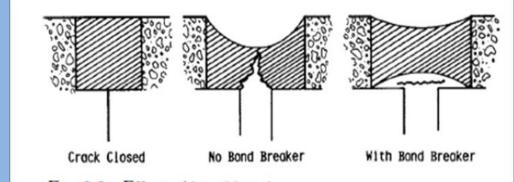
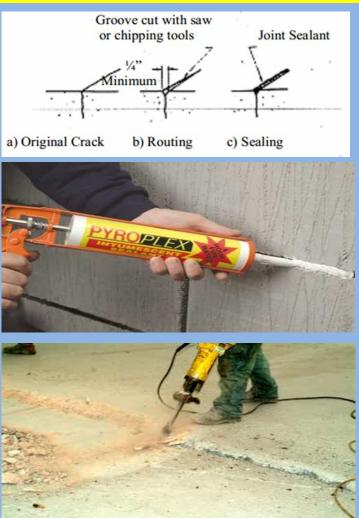

Long-term drying shrinkage	1		Thin slabs (and walls)	Inefficient joints	Excess shrinkage Inefficient curing	Reduce water content Improve curing	7	Several weeks or months
	J	Against formwork	'Fair faced' concrete	Impermeable formwork	Rich mixes Poor curing	Improve curing and finishing	8	One to seven days, sometimes much later
Crazing	к	Floated concrete	Slabs	Over- trowelling				
Corrosion of	L	Natural	Columns and beams	Lack of cover	Poor quality concrete	Eliminate causes listed	9.1	More than two years
reinforcement	М	Calcium chloride	Precast concrete	Excess calcium chloride				
Alkali- silica reaction	N		(Damp locations)	Reactive aggre plus high-alkali		Eliminate causes listed	9.2	More than five years

Table 1: Classification of intrinsic cracks

REPAIR OF CRACKS

Active cracks (Live cracks) are sealed with FLEXIBLE material to support the effect of its movements


- sealing of cracks can be used where structural repair is not necessary
- A cut is made along the length of crack using a saw.
- Clean the crack by sandblasting or by using compressed air or a water jet.
- Provide bond breaker at base if crack is active
- Width-to-depth ratio ≥ 2

Repair of Cracks

Repair of cracks that are not expected to grow in the future (DORMAT or "DEAD" cracks):

- 1. Painting
- 2. Chemical grouting
- 3. Routing and Sealing
- 4. Dry Packing
- 5. Drilling and Plugging
- 6. Epoxy Injection
- 7. Grouting
- 8. Polymer Impregnation
- 9. Autogenous Healing

ACI REPAIR DOCUMENTS

ACI 201.1R—Guide for Conducting a Visual Inspection of Concrete in Service

- ACI 214.4R Guide for Obtaining Cores and Interpreting Compressive Strength Results
- ACI 224.1R—Causes, Evaluation, and Repair of Cracks in Concrete Structures
- ACI 228.2R—Nondestructive Test Methods for Evaluation of Concrete in Structures
- ACI 325.13R Concrete Overlays for pavement Rehabilitation
- ACI 341.3R Seismic Evaluation and Retrofit Techniques for Concrete Bridges

ACI 364.1-13T Repair Tech Notes

ACI 318-11		An ACI Standard
Building Code Requirements for Structural Concrete (ACI 318-11) An ACI Standard and Commentary Reported by ACI Committee 318	Guide to Durable Concrete Reserve to Discondance of Concrete and Masonry Construction Assemblies	Code Requirements for Assessment, Repair, and Rehabilitation of Existing Concrete Structures and Commentary (metric)
American Concrete Institute*	ACI 201.2R	ACI 562N

ACI Repair Documents

ACI 364.1R—Guide for Evaluation of Concrete Structures before Rehabilitation ACI 364.3R_Guide for Cementitious Repair Material Data Sheet ACI 437R— Strength Evaluation of Existing Concrete Buildings

- ACI 437.1R Load Tests of Concrete Structures: Methods, Magnitude, Protocols, and Acceptance Criteria
- ACI 503.5R Guide for the Selection of Polymer Adhesives with Concrete
- ACI 503.7 Specification for Crack Repair by Epoxy Injection Specification for
- ACI 506.2 Shotcrete
- ACI 546R—Concrete Repair Guide

ACI 546.3R Guide for the Selection of materials of the Repair of Concrete

ACI E706 Repair Application Procedures (RAP) 1-14

Guide to the Code for Assessment, Repair, and Rehabilitation of Existing Concrete Structures A Companion to ACI 562-16

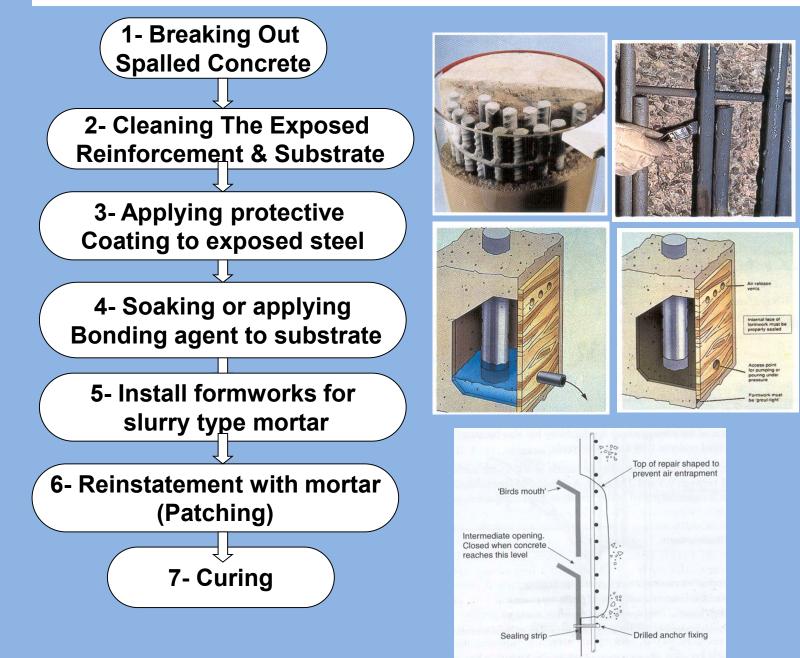
REPAIR MATERIAL SELECTION

General consideration:

- Physical properties Adhesion
- Thermal movement
- **Environmental conditions**
- Curing requirements
 - Type of application
 - Volume stability
 - Installation methods
 - Durability
 - **Corrosion resistance**

1) Resin mortars:

To resist a wide range of aggressive chemicals. Having the ability to cure under environmental condition.


2)Epoxy mortars:

In a well formulated epoxy mortar the shrinkage can be as low as 20 micro strains.

3)Bonding coats:

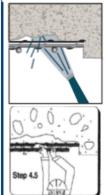
bonding coats are used to promote the adhesion of the repair composition⁶₃to the concrete substrate.

Repair- Reinstatement with Mortar

Repair to spalled concrete

- Install structural supporting system as necessary.
- Remove spalled concrete in stages observing structural restrictions to a depth of 50mm behind the reinforcement.
- Delineate the area to a void feathering affects.
- Welding new bars.
- Apply epoxy coating to provide adhesion to concrete.
- Apply replacement concrete of cementations mortar.

Poor concrete patch geometry and preparation.



Repair of Corroded Bars

Step 1

Surface preparation requires removal of loose and deteriorated concrete, and includes concrete removal behind exposed bar.

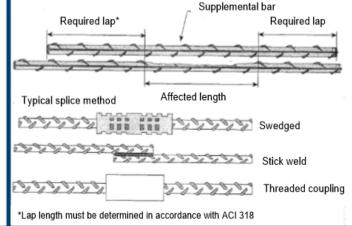
< C.

0

Step 2

Heavy oxides or other bond-inhibiting materials must be removed by any acceptable cleaning method.

Bars damaged during removal operations or with critical section loss may require repair or replacement


In certain situations special coatings may be applied to add additional protection to bars.

If bar has lost more than 10% of its cross section, then bar repair is generally required.

If repairs are required for bars, then one of the following methods should be used:

- 1. Supplemental bar over affected length. New bar may be mechanically spliced to affected bar or placed || to existing bar.
- 2. Complete bar replacement

	aican Concrete Institute Always solvering	ACI 364.10T-14 TechNote
--	--	----------------------------

REHABILITATION OF STRUCTURE WITH REINFORCEMENT

SECTION LOSS

aired as lice hingety of soul exist to the strength doubler, and askets of reminroed of

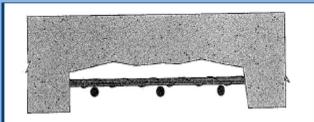
How should an engeneer address exposed and consuled re-incoment when reparring a convestionally meniored concre-invariant (Fig. 1), and about these he a concrete of the last

ying the second, entent and is set of activity of karang abeel abouid ha erai (ACI 361/6T), Gen alle a blite 1 m. C spar material and encapedate the har without

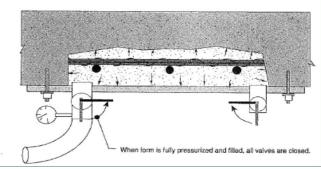
epory in the area surrounding the exposed correction the section. Use collegers to measure the reduced dameter of th

econ of a 30 percent group-sectors area here the to g

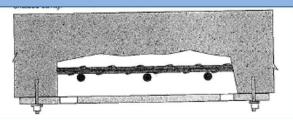
Source: Concrete Repair and Maintenance Illustrated



Shoring


Shoring is the process of temporarily supporting a building, vessel, structure, or trench with shores (props) when in danger of collapse or during repairs or alterations. **Shoring** comes from shore a timber or metal prop. Shoring may be vertical, angled, or horizontal.

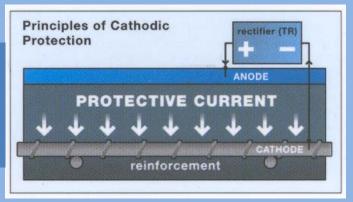
The shoring and temporary bracing shall maintain the structural stability of members and systems before construction and during the repair phases.


Concrete Placement

Surface preparation requires removal of loose and deteriorated concrete, and also includes concrete removal behind exposed bars.

When form is fully pressurized and filled, all valves are closed.

After completion of removals and cleaning, formwork is erected to enclose cavity.


Repair- Cathodic Protection

It is used to prevent or reduce corrosion rates. It works by connecting the metal reinforcement to another material which is anodic in relation to the metal reinforcements. The metal becomes a cathode and its corrosion is reduced. Two systems are used:

Sacrificial anode: It consists of small zinc, or magnesium blocks tie around reinforcements at 50 to 75 cm. They are more reactive than steel and reacts with chloride faster.

Impressed Current System: Inert material (mesh) connected to a DC power supply so that the reinforcement will stay protected in a cathode state

REPAIR METHOD (Galva shield)

Galva shield XP anodes provide localized corrosion protection in reinforced concrete buildings and structures. The palm-sized anode consists of a galvanic zinc core surrounded by an active cementitious matrix

The Benefits

- Can be used in corrosive environments including chloride contaminated and carbonated concrete
- Extends service life of patch repairs
- User-friendly and easy to install

SEVERAL METHODS TO STRENGTHEN A STRUCTURE:

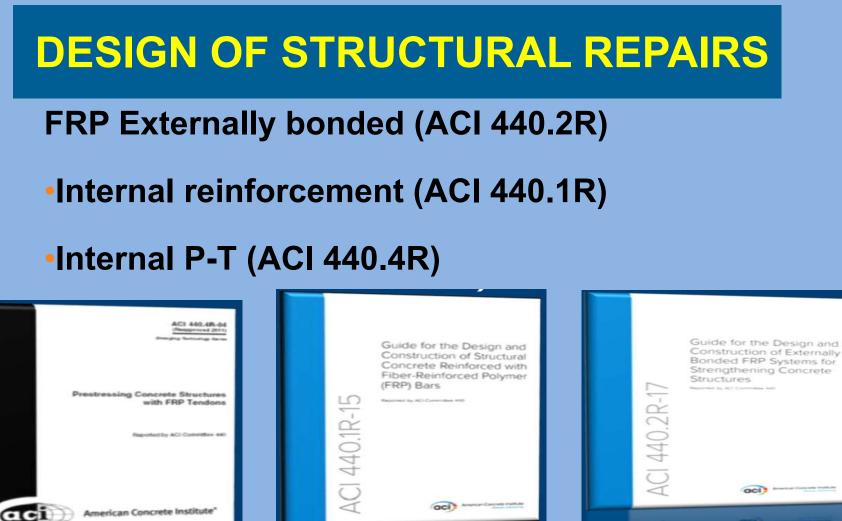
Conventional:

- Concrete enlargement
- Supplemental structural steel

Post-Tensioning

FRP

Structural strengthening is required to address: Existing strength deficiency Higher new design loads Effects of wind and earthquake loads


Application of FRP composites

- The lightweight, high strength and corrosion resistance of fiber reinforced polymers (FRP) make them ideally suited for quick and effective structural repairs.
- As a result, they have been favoured for conducting emergency bridge repairs where <u>speed is of</u> <u>essence.</u>

	ACI 562M-16 with IEBC	ACI 562M-16 as Stand Alone
2.1-General	This code will apply if a jurisdiction has received this code by reference. At the point when this code is utilized, IEBC will not matter.	jurisdiction has adopted the International Existing Building Code as the existing building code. When this code is used, ACI 562M-16 with IEBC does not apply.
2.2-Unsafe Structural Conditions	a structural evaluation will be performed to decide if unsafe structural conditions are available, when there is a condition to wonder the limit of the structure. If the demand-capacity ratio exceeds 1.5 for structures, it should be reported as unsafe structure. And if the demand-capacity ratio between 4.4-4.9 will be utilized to decide the design basis criteria.	a structural evaluation will be performed to decide if unsafe structural conditions are available, when there is a condition to wonder the limit of the structure. If the demand-capacity ratio exceeds 1.5 for structures, it should be reported as unsafe structure.
2.3-Substantial structural damage	Substantial structural damage shall be assessed and rehabilitated as referenced in Table 4.1.4.	Substantial structural damage will be evaluated by current building code demands. And it should be reduced more than 33 percent from its pre-damage condition $\left(\frac{(\sum R_n - \sum R_{cn})}{R_n}\right) > 33\%$
2.4-Conditions of deterioration	If a structure has damage less than substantial structural deterioration, and there is a reason to wonder about the capacity of the structure, it shall be evaluated by checking the demand-capacity ratio $Uo/\phi oRcn$. If $Uo/\phi oRcn$ is greater than 1.0, repairs will be allowed to restore the structure to the pre-damage or pre-deteriorated states.	If a structure has damage less than substantial structural deterioration, and there is a reason to wonder about the capacity of the structure, it shall be evaluated by checking the demand-capacity ratio $Uo/\phi oRcn$. If $Uo/\phi oRcn$ is greater than 1.0, repairs will be allowed to restore the structure to the pre-damage or pre-deteriorated states.

If anticipated repair cost:

Less than 25% of bldg. value, then in-kind repair was typically allowed
25-50% of bldg. value, unaffected portions of bldg. did not have to be upgraded
Exceeds 50% of bldg. value, upgraded to new construction requirements

CASE STUDY -1 (According to ACI Code 562M-16)

REINFORCED CONCRETE BUILDING WITH SIGNS OF DETERIORATION

Exercises

CASE STUDY AND EXERCISES WILL DISTRIBUTED DURING THE WORKSHOP